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The paper describes the phenomenon of drop suspension above an air-blown porous 
surface, which is similar to  the well-known levitation of a drop evaporating above 
a hot plate (‘spheroidal state ’ or the Leidenfrost phenomenon). It has been shown 
that the basis of this similarity is the close analogy between the hydrodynamic 
mechanisms of drop suspension. Together with the viscous mechanism, the effect of 
gas- or heat-flow choking under the drop plays an important role here. The latter 
conditions the threshold character of the above phenomena. A mathematical model 
of cool- and hot-drop suspension is offered which does not contain any a priori 
assumptions about the drop form and can be applied to the critical range of 
parameters. An approximation has also been considered in which the bottom of the 
drop is assumed to be flat, which allows us to carry out an analysis within a wide 
range of parameters. The simplest version of this approximation is a disk model, where 
the problems considered are found to be similar. This version allows analytical 
solution. The model developed has been verified in a ‘cool ’ experiment. The theoretical 
and experimental data have been shown to be in qualitative (and in some respects 
in quantitative) agreement. 

1. Introduction 
The study of the boiling crisis (transition from nucleate to film boiling) is one of 

the crucial problems of thermophysics. An important step in understanding the 
mechanisms of the crisis was the description of the hydrodynamical background of 
boiling on the basis of the analogy between boiling and bubbling (injection of a gas 
into a liquid through the porous bottom of a vessel) established by Kutateladze (1950, 
1979). Such an analogy turns out to be valid not only for processes that occur in a 
volume, but also for separate liquid drops. 

Two regimes can be observed when a drop is placed on a horizontal perforated or 
porous plate which is blown through from below. With weak injection, the drop 
spreads over the surface and, being penetrated by bubbles, begins to ‘boil ’ and 
quickly disperses into small droplets. There exists, however, a critical intensity of the 
blow rate at which the drop can ‘levitate’ above the surface without touching it and 
evaporate slowly (figure 1). 

The situation is reminiscent of the well-known change of the boiling regimes for 
a small portion of a liquid on a heated surface, i.e. nucleate boiling and ‘spheroidal 
state ’ (Leidenfrost) boiling when the liquid gathers into drops separated from the 
surface by a thin vapour interlayer (see Kutateladze 1979). In both cases small 
levitating drops have the form of a ball with a truncated base. The big ones have 
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FIGURE 1. Levitation of a drop above a perforated plate. The differential pressure on the plate 
is close to critical. Divisions on the screen are 1 mm apart. The gap under the drop is z 50 pm. 

the form of a ‘flat spheroid’ of height approximately 2a, where a = (a /gpl ) i  is the 
capillary length. 

The authors have been unable to find in the literature any description of drop 
levitation on an air cushion. On the other hand the spheroidal state, which was first 
described as early as the 18th century (Leidenfrost 1756), is studied in many papers 
(see Pletenyova & Rebinder 1946; Borishansky & Kutateladze 1947; Wachters, 
Bonne & Van Nouhuis 1966; Michiyoshi & Makino 1978; Buyevich & Mankevich 
1982a,b). The interest in it is due to both its applications (e.g. heat transfer of a 
heated surface with a drop-containing flow in nuclear reactors) and its connections 
with other physical phenomena, such as non-coalescence of contacting drops 
(Deryagin & Prokhorov 1949). Finally, the visible analogy of the Leidenfrost 
phenomenon with film boiling seems to be the key to understanding the boiling crisis 
mechanisms in general (Borishansky & Kutateladze 1947). 

The difficulties in experimental and theoretical research on the Leidenfrost 
phenomenon are due to the influence of secondary factors common to thermal 
phenomena (air humidity, heat and mass transfer from a drop to an ambient medium, 
convective and thermocapillary motions in the drop itself and on its surface). ‘Cool’ 
experiments (with a drop on an air cushion) are free from the above disadvantages, 
incomparably simpler to perform and more flexible with respect to parameter 
variation. This enables us to consider a drop on an air cushion as a convenient model 
for the spheroidal state. Moreover, one may hope that this phenomenon itself will 
also have interesting applications, e.g. for non-contact technologies. 

2. Qualitative description 
Let us consider possible regimes of dropflow interaction. When the blow rate w,, 

is great, the drop can soar above the surface at a height comparable with its radiust 

t In practice this is possible only for sufficiently small drops (with R 4 a). 
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R (or 9 R ) .  In this case the drop is acted on by the drag force F - pgv i  R2, which 
is determined by the dynamic head. On decreasing vo, the thickness of the gap under 
the drop h decreases and at h < R the force, still being inertial, is determined by the 
radial velocity u N v,R/h and thus F - pg vi R4/h2. When h attains values of the 
viscous scale ( x v /vo) ,  the differential pressure over the gap is determined by viscous 
tensions. Assuming that the blow rate under the drop is fixed, we will get the formula 
F - ,up v, R4/h3. Its validity as h+O would imply the possibility of suspension of the 
drop no matter how weak the blow rate. There exists, however, a scale h, at which 
the drop begins to ‘choke’ the gas flow under it, the pressure over the gap becomes 
equal to the pressure under the porous plate p ,  and the force attains its limiting level 
F - Ap R2, where Ap = p ,  -po  and p o  is the atmospheric pressure. The value of h, 
can be estimated by equating the two last expressions for F .  Assuming that the plate 
resistance is linear: vo = (k/ ,ug)Ap, we will have h, - (kR2)i. Here k is the plate 
permeability, the value of the length dimension proportional to the ratio between 
the square of the characteristic size of the pores and the plate thickness, and therefore 
is very small. 

The drop-suspension condition is the equality of F to the drop weight. Let us stress 
that the critical parameter that determines the possibility of levitation is the 
differential pressure on the porous plate Ap and not the blow rate vo as it might seem 
at first glance. It refers, however, to sufficiently smooth surfaceswhen the characteristic 
roughness size S is smaller than h,. Otherwise, the choking regime cannot be realized 
and vo becomes a critical parameter. 

In the case of the Leidenfrost phenomenon a drop is supported above the surface by 
the vapour overpressure over the gap, determined by the difference AT between the 
surface temperature Tl and the boiling point To which corresponds to the ambient- 
pressure p , .  An analogue of the blow rate is the vaporization rate vOT = h ATlhLp,, 
where h is the heat conductivity of the vapour and L is the latent heat of evapora- 
tion. As with a drop in an air cushion, two levitation regimes are possible, i.e. iner- 
tial, with F - pv VET R4/h2 (Borishansky & Kutateladze 1947) and viscous, with 
F - pVvoT R4/h3 (Wachters et aE. 1966; Baumeister, Hamill & Schoessow 1966). These 
formulae, obtained on the assumption that the temperature of the drop is constant 
and equal to To, become invalid in the critical range where one should take into 
account the thermal analogue of choking. As h+O the temperature on the drop 
bottom should tend to TI and the pressure over the gap should tend to an appropriate 
value p l T .  Then the heat flux to the drop tends to zero and the force that acts 
on it attains its limiting level F - ApT R2, where APT = p l T - p o .  The relation 
between APT and AT is determined by the Clapeyron4lausius equation, which at 
AT < To, pv < p, reduces to a linear dependence AT = (To/Lp,)ApT.  Equating, as 
above, the last expressions for F ,  we find the thermal-choking scale h,T x (ZR)?, 
where Z - (vvhT, /L2pv)~.  For a water drop under normal conditions h,T x 10 pm at 
R x l c m .  

Thus there exists a distinct analogy between the possible mechanisms of drop 
suspension in the phenomena under examination. We will obtain below a mathematical 
expression for this analogy for the viscous regime of levitation (including the choking 
regime). The characteristic feature of the thermal problem is the explicit dependence 
of blow rate vOT on the gap thickness h. It leads, in particular, to the fact that the 
Reynolds number Re 3 hvo,/v, which governs the flow regime over the gap, is 
unambiguously determined by the wall temperature : Re = h AT/L,u, and is the same 
for all suspended drops irrespective of their size. Let us note that for water drops 
under normal conditions Re = 1 only at AT x lo00 K, so one may almost always 
assume that Re < 1. 
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3. Governing equations 
The objective of the theory is to determine the form of a drop and its location with 

respect to the wall, provided that the drop volume V and Ap (or AT) are given. One 
should determine, in particular, the minimum values of Ap and AT a t  which the 
thickness of the gap under the drop tends to zero. 

The form of the drop is defined by the hydrostatic equation 

p + a ( K , + K , ) + p , g h  = const. (1) 

where p ( r )  is the gas (vapour) pressure on the drop surface, K ,  and K ,  are the basic 
curvatures of the surface, z = h(r) is an equation for the surface of the drop over the 
meridian section. Equation (1) will assume an elegant form, convenient for numerical 
integration, if we introduce an arclength s and a tangent slope to the contour 8. Then 
K ,  = d8/ds, K ,  = sin8/r. Having chosen as a length unit the capillary constant a and 
as a pressure unit p1 ga and having made (1) dimensionless, we will reduce (1) to the 
following system : 

(2) 8' = c -p -h- - ,  r' = cos8, h' = sine. 
sin 8 

r 

Here c is a constant and the prime denotes differentiation with 
The gas (vapour) flow over the gap can be described by the 

terms of the thin-layer approximation (Batchelor 1970) : 

respect to s. 
Stokes equations in 

The boundary conditions for (3), (4) and the further derivation of equations will be 
discussed individually for the cases under study. 

3.1. A drop on an air cushion 
For the surface of a pure-liquid drop we should formulate the continuity condition 
of tangential stresses. However, due to the concentration of surfactants under normal 
technical conditions, the no-slip condition seems to be more suitable (and much 

(5 )  
simpler) : v = u = 0 at z = h(r).  

The simplest formulation of the boundary conditions for a porous surface is to give 
a uniform blow rate: v = v,,, u = 0 at z = 0. However, in the critical range of 
parameters it leads to a contradiction, and so it is necessary to solve the conjugate 
problem of a flow in a porous plate. Nevertheless, when its thickness is much smaller 
than the drop radius, we can assume that the blow rate is'determined by the local 
differential pressure and neglect its radial component : 

k 

&3 

v = - - , - p ( r ) ] ,  u = O  at z = O .  

From (3) and (5) the representation for the radial velocity over the gap is: 

z[h(r) -21 dpldr. Substituting i t  into the continuity equation (4), integ- 
1 = -~ 

2 k  
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rating the latter from 0 to h and equating the expression obtained for v(r ,  0) to (6)) 
we obtain an equation for the pressure distribution over the gap: 

To solve the problem completely, we need equations describing the flow around a 
drop. However, when the drops are not too small, the pressure vanes substantially 
only over the gap and in the neighbouring narrow region; beyond this it is practically 
constant. Therefore the objective can be achieved with the help of an appropriate 
extrapolation of (7) from the gap region. The easiest way to do this is to formally 
extrapolate (7) to the entire contour of the drop after the substitution of d/dr by 
d/ds (we may also substitute s for r everywhere in (7)). Let us also make (7) 
dimensionless with the help of the introduced scales of length a and pressure plga 
and reduce it to a system of first-order equations: 

The above extrapolation possesses the necessary qualities, since system (8) is in practice 
similar to (7) over the gap where T x s and the pressure rapidly becomes constant 
beyond it owing to the smallness of the parameter y. I 

3.2. Leidenfrost drop 

In  formulating the thermal problem we will use the simplest assumptions. For the 
vapour flow over the gap the following boundary conditions are assumed: 

v = u = O  at z = O ;  (9) 

[Tl-T(r)] ,  u = 0 a t  z = h(r). 
A 

2) = -- 
hLPv 

The parameters A and pv may be assumed as being given at a temperature average 
of To and Tl (Wachters et al. 1966). The no-slip condition u = 0 for the drop surface 
should be treated carefully owing to possible thermocapillary phenomena. Never- 
theless, this condition is generally used in papers on the Leidenfrost phenomenon. 
The first condition in (10) requires special comments. First, it  has been obtained on 
the assumption of a z-linear temperature profile over the gap. This assumption is 
justified by the a posteriori &timation of the convective terms in the thermal- 
conductivity equation. Secondly, the temperature of the drop surface T is usually 
assumed in (10) as being constant and equal to To. This assumption CaMOt, however, 
be used in the critical range of parameters, as was pointed out first by Buyevich & 
Mankevich (1982a, b ) . t )  

Let us now consider the dependence of T on the gap pressure p described by the 
ClapeyronXlausius equation. We will use its linear approximation, which is valid for 
T--T, 4 T,, and assume that pv 4 pl. Then 

m 

t The analysis in these papers has been carried out in terms of the disk model (see $5.2). 
Unfortunately, the authors made an error in deriving the equations which led to an inaccuracy 
of the results and affected some qualitative conclusions. 



6 M .  A .  Qoldshtik, V.  M .  Khanin and V.  C. Ligai 

Let us introduce the value p , ,  = p ,  + A T / A ,  which coincides for small AT with the 
saturation pressure at a temperature T,. Then we can write Tl - T = A(plT - p )  and 
condition (10) will assume a form similar to (6). Now, analogously to the derivation 
of (7) and (8), we obtain an equation for the pressure over the gap: 

and an extrapolation system 

Let us note that for water drops under normal conditions the value of the parameter 
yT is only 1.1  x lo-',. 

The difference between (7), (8) and ( l l ) ,  (12) arises because the evaporation rate, 
unlike the blow rate, depends explicitly on h. Therefore the derived equations are 
not similar to each other, though the analogy between them is sufficiently close. 

3.3. Problem formulation 
Equations ( 2 )  and (8) (or (12)) form a closed system. We can integrate them having 
specified the initial conditions at  the lowest point on the drop axis, 

O = r = j = O ,  h = h a ,  p = p a  at s = O ,  

up to the value s = s,, which, together with one of the parameters c, ha, pa, is 
determined as an eigenvalue from the drop-contour closure conditions : 

@(a,) = x ,  r(sl) = 0. 

The two other parameters correspond to the given experimental quantities, i.e. to 
the ambient pressure p ,  and the drop volume V. 

The calculations showed that it is useful to fix the parameters ha andp,. In so doing, 
the eigenvalue c and the corresponding value s1 were determined by the bisection 
method . 

4. Numerical results 
Figure 2 shows an example of a calculation which illustrates the characteristics of 

the drop structure and pressure distribution on the drop surface. The calculation 
refers to a drop on an air cushion and the value of y corresponds to our experimental 
conditions. All the values given are dimensional (a is chosen as being equal to 2.5 mm). 
One should note the table-like pressure profile over the gap, which is due to the effect 
of flow choking. 

Figure 3 presents the minimum gap thickness h, and the gap thickness on the axis, 
ha versus Ap for drops of different sizes. The maximum radius R of a drop is chosen 
as its geometrical characteristic. The value of Ap = Ap, for which h, = 0 is the 
critical differential pressure. It is interesting that the minimum of h is attained in 
the drop periphery and its bottom is concave (as in figure 2) only at  sufficiently large 
values of Ap. Otherwise, h, = ha, the bottom is convex and remains the same 
until the 'landing' of the drop on the surface at  Ap,. 
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FIQURE 2. (a) Drop form (curve 1: - , calculation; 0,  experiment), profile of drop bottom 
(curve 2: -, calculation, along the vertical a 200-fold increase) and pressure distribution around 
drop contour (curve 3: -, calculation). (b) The distribution of the injection rate on the porous 
surface is shown schematically; y = Ap = 2 . 4 5 ~ ~ 9 ~ .  

FIQURE 3. Gap thickness on the drop axis ha and minimum gap thickness h, us differential 
pressure on a porous plate for drops of various sizes on an air cushion; Ape = 2p, ga. 



8 M .  A .  Goldshtik, V .  M .  Khaninand V .  G .  Ligai 

1 1.5 2 ATIAT, 

FIGURE 4. Gap thickness on the drop axis h, and minimum gap thickness h, uu8 surface 
temperature for Leidenfrost drops; AT* = 2pl gaT,/Lp,. 
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FIGURE 5. Lowest-possible pressure Ap,,, and temperature ATm differences for drop levitation us 
drop size. Curve 1, 'disk' model; curves 2, 3, exact solution, for yT = 1.1 x 10-lo and y = 
respectively; curve 4, flat-bottom approximation with allowance for the lateral surface of the drop, 
for y = lo-'. Experiment: minimum differential pressure for drops with 0,  a = 2.48; 0, 2.60; A, 
2.70 mm. The permeability of the perforated plate k = 0.24 x lo-' m. 

The bottom of the Leidenfrost drop has a different structure (figure 4) : it is always 
concave and is flattened only if the temperature tends to  the critical value 
(AT+ATm). At values of AT which are close to ATm, ha and h, vary extremely 
sharply, which means that there exists a certain interval of gap thicknesses where 
Leidenfrost drops cannot be observed in practice. 

Nevertheless, despite the differences in the structure of the bottom, the dependence 
of the critical parameters on the drop size (figure 5 )  is similar. It is noteworthy that, 



A liquid drop on an air cushion 9 

with increasing R, they decrease, which means that it is easier to suspend a drop, 
the larger its 8:ze.t The quantities 

2Pl WTo 
LPl 

Ap,, = 2pl ga, AT,, = -, 

with which Ap and AT are scaled in figures 3-5 represent the limiting values of the 
critical parameters as R + m .  For water drops under normal conditions 
AT,, x 0.013 K. This result, which means that the drop can be suspended at a 
negligible surface superheat,$ seems to be rather unexpected at first sight, but is 
qualitatively confirmed by experiment (Gossar 1895 ; Wachters et al. 1966). 

5. Flat-bottom approximation 
The solution of the problems thus formulated (as the nonlinear eigenvalue 

problems) is rather time consuming. Therefore the subsequent analysis will be carried 
out in terms of an approximation in which the nonlinear part of the problem.related 
to the determination of the drop form will be separated from the general scheme. This 
can be achieved with the help of the assumptions, normal in papers on the Leidenfrost 
phenomenon, that the drop bottom is flat and in calculating its lateral surface the 
pressure may be assumed to be constant. In terms of this approximation, the drop 
form is unambiguously determined by its volume and only the gap thickness h is a 
function of Ap or AT. 

5.1. Drop form 
The form of a drop with a flat bottom can be calculated in a more convenient way, 
if we begin with its top. Formally this can be achieved by the substitutions s+-s, 
0+7c-8, h+- y in system ( 2 ) ,  where we now assume that p = const. This reduces 

(14) 
( 2 )  to the form 

6 = c + y - - ,  r' = cos8, y' = sine. 

We can integrate system (14), having specified the initial conditions i9 = r = y = 0 
at  s = 0 up to the value s = so at which the tangent to the contour will be horizontal 
again: e(so) = 7c. 

Figures 6 (a,  b) show results of the calculations of the drop volume V ,  its height H, 
base radius R, = r(a0), effective height He = V/nR; and surface curvature on the line 
of conjugation with the flat bottom, KO = @'(so) (the two last values are related by 
the equality He = a2Ko) as functions of the maximum drop radius R (see also 
Wachters et al. 1966). The asymptotic form of these functions at R Q a can be found 
if we use the intuitive notion that the form of a small suspended drop is a ball with 
a truncated base of radius R, 4 R. Then H x 2R, V z QzR3 and the force balance 
will give p l g V  = 7cRt Ape, where Ape = 2a/R is the pressure jump at the exit from 
the gap, which is the same as the capillary jump on the lateral surface. Thence 
R, x 1/$R2/a, He x 2a2/R. As R + m  we have H ,  He+2a, R, N R, V N 2axR;. 
Control calculations carried out in terms of the full formulation of $3 have shown 
that the form of the lateral surface actually depends only slightly on Ap and AT and 
can be well described by a flat-bottom approximation. 

sin 8 
r 

t Here we have not taken into account the possible instabilities of the surface which are more 

$ This conclusion, like the previous one, does not take into account the instability of the drops 
typical of large drops and make their suspension difficult (see $86.2, 6.3). 

and also the roughness of the wall (see $5.2). 
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FIQURE 6. (a, b )  Mutual dependence between geometrical parameters of levitating drops ($$5.1,5.3). 
Experimental data: 0, a = 2.70 (pure water); A, 2.65, .,2.48 mm (water with organic additives). 

5.2. Disk model 

We will come to the simplest drop-suspension model, setting h = const. in (7), (11) 
and taking as boundary conditions for these equations (together with the axial- 
symmetry condition) that  the pressure becomes equal to atmospheric immediately 
beyond the gap : 

(15) - = 0  at r = O ,  p = p ,  a t  r > , R , .  
dr 

Actually the drop is substituted by a flat disk of radius R, which depends on the drop 
volume. The substitution of the variables x = r /Ro ,  $ = (p, -p)/Ap reduces problems 
(7), (15) and ( l l ) ,  (15) to  the identical form 

dP 

(Xq5’)’ = Px$; $’ (O)  = 0, $( I )  = 1.  (16) 

Thus in terms of this model the ‘cool’ and thermal problems turn out to be similar. 
The similarity parameter P is equal to 

/3 = (%) , /3 = PT = rTy, h, = (12kR3:, h*T = (2  .\/3 ZR&, 

respectively, and the values h, and h*T are the choking scales for both problems. 

3 

(17) 

The solution of (16) is described by modified Bessel’s functions: 

$ ( x )  = Io(@x)/Io(&. 

The force that acts on the drop and the gas flow from the gap is defined by the 
formulae 

The dimensionless forcef, together with its asymptotics, is given in figure 7 (a )  as a 
function of /3 and in figure 7 ( b )  as a function of the gap thickness h/h, (for the 
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FIGURE 7 .  Dimensionless force acting on a drop (in terms of the ‘disk’ approximation) 21.3 (a) 
parameter ,!? and ( b )  thickness of the gap. h, is the choking scale. Comparison with experimental 
data on disk levitation. Symbols 0, 0, +, A, A correspond to experimental series numbers 
1 ,  2, 3, 4, 5, respectively, in table 1 (96). 

‘cool’ problem). When h > h,, which corresponds to the uniform-blow assumption, 
F = inpg vo R4/h3. This formula is identical with the formula for the force that acts 
on a disk moving towards a plane in a viscous medium (Batchelor 1970). A t  h < h,  
we should take into account the choking effect. As h+O we have Q+O, F+xRiAp.  

When applying this to the thermal problem, in (18) we should set 

In this case Q has the sense of the full vapour flow from the drop bottom, which is 
connected with the heat flux flowing into the drop: q = pv  LQ. The dependence of 
the dimensionless flux on the gap thickness is given in figure 8. The case h > heT 
corresponds to the applicability of the assumption about the constant temperature 
of the drop. In  this case 

37c vv h ATR; h AT 
2 pvLh4 h ’  

p=- , q = x R i -  
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FIGURE 8. Heat flux to the drop bottom as a function of gap thickness. Asymptotics are given 
for small and large h/heT ,  where h*T is the thermal-choking scale; q* = rrRthAT/h,T. 

which corresponds to the well-known formulae (Wachters et al. 1966). As h+O we 
have 

It is noteworthy that the heat flux tends to zero as both h + m  and h+O. At the 
same time, the force F (as with a drop on an air cushion) tends to a certain finite 
limit, which conditions the critical character of the phenomena under study. 

Setting F from (18), (19) equal to the drop weight p1 gnR: He we obtain the relations 

which, together with (17),  determine the dependence of the height of suspension h of 
a drop of given volume on the pressure or temperature difference. Since f + 1 as h+07 
the values Apm and ATm from (20) are critical parameters in terms of this 
approximation. Their dependence on the drop size is defined by the similarity 
relations 

and is given in figure 5 .  The values Ap* and AT* are defined by (13). 
In experiments the height of drop suspension is limited to the roughness of the 

surface 6. The appropriate critical parameters Ap8 and AT8 can be estimated from 
the above relations by substituting 6 for h. The dependence of AT8 on 6 is given in 
figure 9. Let us note that at 6 > h*T there exists a very strong dependence AT8 N 61. 
This is the reason why the Leidenfrost phenomenon can usually be observed a t  
sufficiently great superheats of the surface, though the theoretical limit of the 
Leidenfrost temperature ATm is very small. 
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FIQURE 9. Leidenfrost temperature us surface roughness 8. 
Asymptotic forms of this function are shown. 

5.3. The injuence of the lateral surface 
In the case of sufficiently small drops the disk model is inadequate because the 
contribution of the pressure to the lateral surface to the force F becomes substantial. 
To a lesser extent this concerns the thermal problem, since the evaporation rate 
(as distinguished from the injection rate) beyond the gap rapidly tends to zer0.t 

In this section we will calculate F for drops on an air cushion, assuming that the 
function h(r) in (7) is defined by the formulae 

h = ha at r < R , ,  h = ha+iKo(r-R, )2  at r 3 R, .  (22) 

The substitution of the true dependence h(r) by a branch of a parabola that is the 
asymptotic form of h as r + R, is justified by the fact that the pressure beyond the 
gap rapidly becomes constant. The boundary conditions for (7) are now the axial 
symmetry and the asymptotical tending of p to the value p ,  as r- t  00. 

The solution of this problem is determined by two dimensionless parameters in the 
context of which it is convenient to choose ha/h, and the complex A = 9 6 k / q  R:, 
proportional to the product of the purely physical parameter k/a and the geometrical 
one 6 = a/% R& which is determined by the relative drop size alone. The dependence 
of 5 on Rla is given in figure 6 ( b ) .  At R > 2a, 5 rapidly tends to zero (like ~ ( U / R ) ~ )  
and, at R < +a, 5 tends to infinity (like & ( u / R ) ~ ) .  Figure 10 shows the force that 
acts on a drop as a function of gap thickness for various values of A .  The curve A = 0 
(large drops or small permeability of the porous plate) is the same as the curve in 
figure 7 ( b )  which has been obtained in terms of the disk model. 

The complex A is convenient because it is the only governing parameter in the 
limiting case ha + O .  The dependence of the limiting values of the forcef, on A is given 
in figure 1 1. The differencef, - 1 characterizes the relative contribution of tlie lateral 
surface to the interaction with the flow. Using this curve, we can determine the critical 
differential pressure Apm as a function of the drop size. An example of such a 
calculation for a specific value of the parameter kla is compared in figure 5 with the 

t Nevertheless, the contribution of the lateral surface to the total vapour flux may be substantial 
(Wachters et al. 1966). 
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h*lh* 
FIQURE 10. Force acting on a drop with a flat bottom with allowance 

for its lateral surface, A = 96k/K;: R;. 

1 00 lo-' 10-4 A 10-0 

FIGURE 11, Limiting values of the force when the thickness of the gap under the drop is zero. 

results obtained with the full formulation of the problem and those obtained in terms 
of the disk model. We should note that the closeness of these results is coincidental 
and connected with the mutual compensation of two factors that have not been taken 
into account in the disk model, i.e. the curvature of the drop bottom (convex as h+O) 
and the influence of the lateral surface. 
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Series number. . . 1 2 3 4 5 
Parameter 

D = 2R, (mm) 15 47 15 22 15 
m (g) 6 36 0.92 2.75 0.92 
k (m) 0.86 x 10-@ 0.86 x 10-o 0.63 x lo-’ 0.63 x lo-’ 0.24 x 10-6 
h* (mm) 0.08 0.18 0.35 0.45 0.54 
Re 0.112.5 0.1 /3 0.1130 0.4110 2/35 
Re, 0.02/0.15 0.01/0.1 7/40 10120 25/50 

TABLE 1. Parameters of experimental series on disk suspension 

6. Experiments and discussion 
6.1. Experiments with disks 

As we have already mentioned, a drop on an air cushion may be considered as a very 
convenient ‘cool’ model of the Leidenfrost phenomenon, which allows us to avoid 
a number of complicating factors. We may go further and free ourselves of all the 
factors connected with the variability of the drop form and the motion of the liquid 
inside the drop, and thereby single out the hydrodynamic-suspension mechanism. To 
this effect, we should study the levitation of ‘solidified’ drops - in the simplest case, 
of disks. 

The results of such experiments, which we have performed to verify the dynamic 
part of the theory that we have developed, are given in figure 7 (b), which shows the 
dependence of the dimensionless force f = mg/aR: Ap (m is the mass of the disk) on 
the gap thickness h/h,. The value h was determined from the measured electrical 
capacity of the gap and varied within the range 10 pm-1 mm. Table 1 summarizes 
the parameters of the experimental series, including the range of Reynolds numbers 
calculated from w,, and h(Re) and the mean velocity in the pores (holes) of the plate 
and their characteristic size (Re,). The first two data series refer to a plate of porous 
steel, the other three to perforated smooth plates. 

As is seen from figure 7 ( b )  and table 1, the data from the very wide range of 
parameters are well generalized and completely agree with the threory that takes into 
account the choking effect. It is noteworthy that the agreement with experiment can 
be observed far beyond the limits where the assumptions which underlie this linear 
theory (such as Re, Re, Q 1) are valid. This is because the choking effect forces the 
injection out to the periphery of the drop and the greater part of its base is occupied 
by the ‘shadow’ where the blow rates are small. 

6.2. Geometry of suspended drops : self-sustained oscillations 
Experiments with drops were performed on a smooth plate with k = 0.24 x m. 
We studied water drops which were commercially pure and with the addition of 
carbomethylcellulose, which increases the stability of the surface. Tables 2 
and 3 and figures 2 and 6 ( a )  show some data on the drop fofm which have been 
obtained from photographs of drops taken in profile (as in figure 1). These data 
confirm the fact that the form of the lateral surface of stationary drops depends on 
the injection intensity only slightly and is satisfactorily described in terms of the 
flat-bottom approximation. The data on the dependence between R and V agree 
extremely well. Let us note that within the wide interval of sizes t a  < R < 3a the 
curve V(R) can be described by the empirical formula V = 3.10(aR6)t, which can be 
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Series 1 (a = 2.7 mm) 

V (mm3) 25 40 40 81 104 125 129 131 135 161 188 
2R (mm) 3.90 4.44 4.62 5.92 6.58 6.97 7.21 7.34 7.48 7.90 8.41 
H (mm) 2.90 3.56 3.14 4.01 4.18 4.48 4.31 4.24 4.21 4.48 4.62 
Ap (mmH,O) 10.4 8.2 7.8 8.4 7.4 7.4 7.2 7.0 7.4 7.0 7.0 
c, (PF) 0.77 1.02 0.77 1.43 2.04 2.01 2.04 2.16 2.01 2.16 2.43 
ha (w) 58 66 73 106 95 114 126 122 141 149 157 

Ap (mm H,O) 8.5 8.2 
(theory) 

V (mm3) 19 48 
2R {mm) 3.50 5.04 
H (mm) 2.63 3.38 
Ap (mm H,O) 6.3 7.8 
c, (PF) 0.66 1.6 
ha ( ~ m )  52 65 

Ap (mmH,O) 7.4 7.0 
(theory) 

8.3 9.2 8.0 8.5 9.0 8.7 9.5 7.9 9.4 

Series 2 (a = 2.48 mm) 

5.26 6.46 6.89 7.74 8.12 
3.46 3.69 3.86 4.21 4.35 
9.4 8.6 6.8 6.6 7.1 
1.2 1.5 3.0 3.3 2.4 

8.4 9.3 6.4 6.6 8.4 

52 90 107 145 160 

95 137 72 90 152 

TABLE 2. Geometrical parameters of suspended drops. Differential pressure 
on a perforated plate versus gap thickness. 

Series 1 (a = 2.44 mm) 

V (mm3) 57.0 58.1 86.9 103 167 363 
2R (mm) 5.58 5.60 6.33 6.71 8.17 11.0 
H (mm) 3.33 3.35 3.79 4.08 4.33 5.17 
Apm (mm H,O) 6.3 6.0 6.2 6.2 6.3 6.0 

Series 2 (a = 2.60 mm) 

V (mm3) 32.7 44.8 52.5 76.0 80.4 116 199 216 
2R (mm) 4.33 4.92 5.21 5.96 6.08 7.08 8.58 8.92 
H (mm) 3.00 3.33 3.50 3.83 3.83 4.02 4.83 4.83 
Apm (mm H,O) 6.2 6.0 5.8 6.5 5.7 6.6 6.4 6.3 

Series 3 (a = 2.65 mm) 

V (mm3) 124 232 308 347 367 375 402 
2R (mm) 7.29 9.21 10.29 10.96 11.11 11.29 11.79 
H (mm) 4.07 4.79 5.00 4.93 5.14 5.00 4.93 
Apm (mm H,O) 5.8 6.2 6.0 5.9 6.0 6.2 5.8 

TABLE 3. Geometrical parameters of drops and minimum differential pressure 

used for the precise determination of the volume of suspended drops from diameter 
measurements. 

The data-spread in figure 6(a) with respect to the drop height H is due to the 
existence of self-sustained oscillations of a drop (figure 12), which always arise when 
a certain critical injection intensity is attained. These oscillations are analogous to 
the oscillations of Leidenfrost drops which were first described by Stark (1898) and 
studied by Wachters et al. (1966). The latter showed that the frequency of these 
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FIQURE 12. (a, b)  Opposite phases of self-sustained drop oscillations. Water contains organic 
additives which increase the stability of the drops. 

oscillations can be perfectly described by the Rayleigh formula w = (8a/p, R3): 
for small-deformation vibrations of a spherical bubble or a drop in a weightless state. 
Let us note that the authors relate these oscillations to free convection above a heated 
surface. The existence of similar self-oscillations in ' cool ' experiments shows, 
however, that the reason for this phenomenon should be sought elsewhere. The 
mechanism of these oscillations seems to be connected with the automatic adjustment 
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FIGURE 13. Moment of drop capture by the surface when the amplitude of the 
oscillations has attained the value of the gap thickness. 

of the injection (evaporation) intensity to the magnitude of the gap (see also Hall 
1974). 

On increasing the pressure under the plate the oscillations become very intensive 
and finally cause the capture of the drop by the surface (figure 13). This creates certain 
difficulties for the realization of the phenomenon, since it leads to limitations imposed 
on the permissible blow intensities not only from below, but also from above.? 

6.3. Dependence of h on Ap: critical pressures 
Table 2 presents some data on the dependence of the mean thickness of the gap under 
the drop ha on its volume and differential pressure. The value ha was determined from 
the electrical capacity C,  of the dropplate system. The calculations were based 
on the formula 

C ,  = JoR (2nr /h)dr ,  

where h(r) was assumed to be defined by (22) .  The last line in table 2 represents the 
values of Ap calculated for given V and ha in terms of the model of $5.3. Considering 
the roughness in the determination of the gap thickness, we can conclude that the 
agreement between the theory and experimental data is satisfactory. 

Table 3 and figure 5 present data on the least possible pressure for drop levitation. 
Curve 4, plotted in terms of the flat-bottom model of $5.3 (taking into account the 
lateral surface), agrees with experiment better than other theoretical results. 
According to its sense of a minimum curve, it lies under the experimental points and, 

t As for Leidenfrost drops, any section of their contact with the hot wall may evaporate before 
it attracts and thereby destroys the whole drop. This additional mechanism of stability removes 
the restriction on the blow intensity from above and results in an interrupting-contact regime 
typical of the spheroidal state. 
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considering their spread, can be assumed to be qualitatively satisfactory. It 
corresponds, in particular, to the rather weak dependence of critical differential 
pressures on drop sizes (for R > 0 . 7 5 ~ )  that is observed in, experiment. The reason 
for the location of curve 3, obtained in terms of the full formulation of the problem, 
above the experimental points is not completely clear to us. This may be connected 
with the development of oscillations on the drop bottom, which make it effectively 
flat. 

7. Conclusion 
This paper describes the phenomenon of drop levitation on an air cushion, which 

is similar to the well-known Leidenfrost phenomenon. It has been shown that this 
similarity is based on the close analogy between the hydrodynamic mechanisms of 
drop suspension. One of the mechanisms is connected with the effect of gas- or heat- 
flow choking under a drop which conditions the threshold character of the phenomena 
under study. The critical parameter that governs the possibility of levitation is the 
differential pressure on a porous surface (as does the critical (Leidenfrost) temperature 
in the thermal problem). 

We have developed a mathematical model of drop levitation, applied to the viscous 
regime of a gas or vapour flow over the gap, that can also be used in the critical range 
of parameters. As for the Leidenfrost problem, this formulation differs from those 
developed earlier in excluding a priori assumptions about the drop form and in the 
correct consideration of the choking effect. The flat-bottom approximation has also 
been considered in which the nonlinear equations for the drop form and the linear 
equations for the pressure distribution are separated. The simplest form of this 
approximation (disk model) allows analytical solution. In  terms of this model the 
‘cool’ and the thermal problems turn out to be similar and the similarity parameter 
is determined by the ratio of the gap thickness to the corresponding choking scale. 
In the exact formulation of the problems this similarity is violated, which is connected 
with the explicit dependence between the rate of evaporation from the drop bottom 
(as distinguished from the injection rate) on the local gap thickness. 

It leads to various structures of the bottom in the critical range. The bottom of 
cool drops is convex as h + 0 ; the bottom of Leidenfrost drops is concave. At the same 
time, the form of the lateral surface of the drops is the same: it depends only slightly 
on loads and can be well calculated in terms of the flat-bottom approximation. The 
force acting on drops of capillary size is mainly determined by the pressure applied 
to their underside and can be calculated roughly in terms of the disk model. With 
decreasing volume, the influence of the lateral surface becomes appreciable. The 
critical parameters (minimum differential pressure and Leidenfrost temperature) are 
found to be decreasing functions of the drop volume. Their characteristic values are 
very small. Thus for water drops of capillary size the critical superheat of the surface 
amounts to only 0.01 K, if the roughness of the surface is less than the choking scale 
( - 10 pm fc - R - 1 cm). However, with increasing roughness, the critical parameters 
increase sharply. 

The experiments performed on disk levitation have confirmed the validity of the 
ideas about the mechanisms of suspension which underlie the theory developed here. 
The theory also perfectly describes the form of the lateral surface observed with 
stationary suspended drops. It offers, in particular, a simple method of determining 
the volume of the suspended drops in the process of their evaporation. The results 
obtained from measuring the thickness of the gap and the lowest-possible differential 
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pressures for drop levitation agree only qualitatively with the theoretical predictions. 
In this case the best results can be obtained in terms of the flat-bottom model with 
allowance for the lateral surface of the drops. 

With increasing injection intensity, self-sustained oscillations of drops develop. 
Their amplitude may become appreciable, which leads to the capture of a drop by 
the surface, and so explains why the permissible blow rates are found to be limited 
from above. The oscillations of drops on an air cushion are quite similar to the 
oscillations of Leidenfrost drops. This testifies to the hydrodynamic nature of the 
latter and calls into question the postulated thermoconvective mechanism of these 
oscillations. This is an example of the use of the phenomenon described as a model 
of the Leidenfrost phenomenon. Other applications may arise, for instance in 
studying the interaction between suspended drops. 

In  conclusion we will note that this research was stimulated by Kutateladze’s idea 
concerning the analogy between boiling and bubbling. The authors are thankful to 
Academician S. S. Kutateladze for his support and useful discussions. 

R E F E R E N C E S  

BATCHELOR, G. K. 1970 An Introduction to Fluid Dynamics. Cambridge University Press. 
BAUMEISTER, K. J., HAMILL, T. D. & SCHOESSOW, G. J. 1966 A generalized correlation of 

vaporization times of drops in film boiling on a flat plate. In Proc. 3rd Zntl Heat Transfer Conf., 
N .  Y .  AZChE, vol. 4, pp. 66-73. 

BORISHANSKY, V. M. & KUTATELADZE, S. S. 1947 Some data on evaporation of a liquid in the 
spheroidal state. Zh. Tekhn. Fiz. 17, 891-902. 

BUYEVICH, Yu. A. & MANKEVICH, V. N. 1982a On the theory of evaporation of a liquid in the 
spheroidal state. Dokl. Akad. Nauk SSSR 262, 1373-1377. 

BUYEVICH, Yu. A. & MANKEVICH, V. N. 1982b On the theory of the Leidenfrost phenomenon. 
Sov. Thermophys. High Temp. 20, 1136-1143. 

DERYAOIN, B. V. & PROKHOROV, P. S. 1949 Investigations of causes for noncoalescence of liquid 
drops under static conditions (prolonged contact). In New Studies in the Field of Aerosols, pp. 
84-101. Inst. Phys. Chem. of Acad. Sci. U.S.S.R. (Transl. U.S. AEC Rep. No. UCRL-trans-601. 
1960). 

GOSSAR 1895 Ann. Chim. et Phys. 4, 391. 
HALL, W. B. 1974 The stability of Leidenfrost drops. In Proc. 5th Zntl Heat Transfer Cunf., 

vol. 4, pp. 125-129. Tokyo: ISMESCEJ. 
KUTATELADZE, S. S. 1950 A hydrodynamical model of heat transfer crisis in a boiling liquid in 

free convection. Zh. Tekhn. Fiz. 20, 891-902. 
KUTATELADZE, S. S. 1979 Fundamentals of Heat Transfer (5th edn). Moscow: Atomizdat (1963, 

transl. of 3rd edn. Arnold and Academic). 
LEIDENFROST, J. G. 1756 De Aqme Communis Nmnullis Qualitatibus Tractatus. part 2, pp. 30-63. 

Duisburg. 
MICHIYOSHI, I. & MAKINO, K. 1978 Heat transfer characteristics of evaporation of a liquid droplet 

on heated surfaces. Zntl J. Heat Mass Transfer 21, 605-613. 
PLETENYOVA, N. A. & REBINDER, P. A. 1946 Regularities of evaporation of liquid droplets in the 

spheroidal state. Sov. J .  Phys. Chem. 20, 961-971. 
STARK, J. 1898 Ann. d .  Phys. Chem. 65, 306. 
WACHTERS, L. H. J., BONNE, H. & VAN NOUHUIS, H. J. 1966 The heat transfer from a hot 

horizontal plate to sessile water drops in the spheroidal state. Chem. Enqng Sci., 21, 923-936. 


